全国服务热线 13569637661

热学

发布:2010-07-28 17:00,更新:2010-01-01 00:00

                                 

热学】热学是物理学的一个重要部分。它专门研究热现象的规律及其应用。对热现象的研究:一是由观察和实验入手,总结出热现象规律,构成热现象的宏观理论,叫做热力学;二是从物质的微观结构出发(即以分子、原子的运动和它们之间的相互作用出发),应用统计方法去研究热现象的规律,构成热现象的微观理论,叫做统计物理学。它所研究的范围包括:测温学、量热学、热膨胀以及热传递等。若从广泛的涵义上,热学还包括其他有关热现象研究的热力学、分子物理学和热工学等分科。热力学和统计物理学研究对象是一致的,都是研究物体内部热运动的规律性以及热运动对物体性质的影响,但是研究的方法截然不同。热力学根据观察和实验所总结出来的热力学定律,以严密的逻辑推理来研究宏观物体的热性质,它不涉及物质的微观结构。统计物理学则从物质的微观结构出发,依据每个粒子所遵循的力学规律,用统计学的方法研究宏观物体的热性质。热力学对热现象给出可靠的依据,用以验证微观理论的正确性;统计物理学可深入探讨热现象的本质,使热力学的理论获得更深刻的意义。因此这两种方法,起到了相辅相成的作用,使热现象的研究更加深入。

热力学】它是研究热现象中物态转变和能量转换的学科。由观察和实验总结出热现象的规律,构成热现象的宏观理论。在19世纪中叶,焦耳等人通过多次实验,将热确定为能的一种形式,从而建立了热力学。热力学的研究是从大量经验中总结了自然界有关热现象的一些共同规律而得出热力学定律(即热力学第零、第一、第二和第三定律),用严密的逻辑推理来研究宏观物体的热性质及规律。热力学所研究的内容,在量子力学发展以前就有了一定的基础,故论及的系统及所持的理论均出于宏观的概念。主要探讨物质系统的平衡状态以及与平衡状态偏离不大的物理、化学过程,近年来,对非平衡状态过程的研究,亦取得一定的成果。热力学不涉及物质内部的微观结构,对热现象的本质亦不能作出解释,这是它的局限性,这些都需要统计物理学来补充、说明并加以发展。

统计物理学】是用统计方法研究由大量微观粒子组成的物质系统内部热运动规律及其对系统性质的影响。它是从物质的微观结构,即从分子、原子的运动和它们之间的相互作用出发,来研究热现象的规律,构成热现象的微观理论。统计物理学的前身是气体分子运动论。统计物理学是从宏观系统内部的微观结构出发,根据微观粒子所遵从的力学规律,用统计方法,将系统的宏观性质及其变化规律推导出来。所以,统计物理学与热力学两者之间可以相互补充。19世纪在经典力学基础上形成了“统计力学”。在研究气体处于平衡状态下的性质方面取得成就,对热力学已经获得的结果,能从微观角度更深刻地加以阐明。以后,随着研究范围的扩展而取得统计物理学的名称。20世纪以来,由于发现微观粒子具有量子性质之后,在量子力学基础上形成“量子统计物理”。

统计物理学对于许多涉及多体问题的学科都有重要应用。例如,在固体物理学、原子核物理学、物理化学和天体物理学等方面均取得巨大成就。在相变,超导性、超流性、等离子体等方面运用统计物理方法,于近年来亦有很大的进展。

】热的概念来自人们对冷热的感觉。它是物质运动表现的形式之一。它的本质是大量的实物粒子(分子、原子等)停息地作无规则的运动。热与实物粒子的无规则运动的速度有关,无规则运动越强烈时,则该物体或系统就越热,温度也越高。热的另一种涵义是热量,热量是能量变化的一种量度。热量与温度的概念不同,不能混为一谈。

热运动】是物质的一种运动形式。宏观物体内部大量微观粒子(如分子、原子、电子等)停息的无规则运动称为热运动。它是物质的一种基本运动形式。一个物体或某一系统在热平衡时的温度,取决于他内部微观粒子热运动的状况,热运动越剧烈,它的温度就越高。

热现象】凡与温度有关的物质系统性质的变化,统称为“热现象”。例如,物体吸热后温度升高,体积膨胀;水受热后变成水蒸气等,都是由于温度发生了变化,物体的性质也随着而变化,这说明热现象是大量分子无规则运动的表现。

温度】是表示物体冷热程度的物理量。由人的感觉来判断物体的冷热程度,是建立在主观感觉基础上的。为了能客观地反映物体的冷热程度,人们引入了温度的概念。从分子运动论的观点来看,温度是物体内部大量分子无规则热运动剧烈程度的体现。它是物体冷热的内在根据,热运动越剧烈,物体的温度就越高。某一物体温度升高或降低,就标志

 

 

kt。式中k为玻尔兹曼常数,t为

气体温度的微观实质是分子平均动能的量度。由此看来,温度是含有统计意义的,它是大量气体分子热运动的集体表现。对于个别分子而言,它的动能可能大于平均动能,也可能小于平均动能。但在温度一定时,它是一个确定的值。对于个别分子,说它温度是多少是没有意义的。

温标】温度数值的表示方法叫做“温标”。为了定量地确定温度,对物体或系统温度给以具体的数量标志,各种各样温度计的数值都是由温标决定的。为量度物体或系统温度的高低对温度的零点和分度法所做的一种规定,是温度的单位制。建立一种温标,首先选取某种物质的某一随温度变化的属性,并规定测温属性随温度变化的关系;其次是选固定点,规定其温度数值;Zui后规定一种分度的方法。Zui早建立的温标是华氏温标、摄氏温标,这些温标统称为经验温标。它们的缺陷是温度读数与测温物质及测温属性有关,测同一热力学系统的温度,若使用摄氏温标标定的不同测温属性的温度计,其读数除固定点外,并不严格一致。经验温标现已废弃不用。为了统一温度的测量,温度的计量工作中采用理想气体温标为标准温标。规定温度与测温属性成正比关系,选水的三相点为固定点。在气体液化点以下及高温下理想气体温标不适用,由于氦的液化温度Zui低,因此氦温度计有它一定的优越性。国际单位制中采用的温标,是热力学温标。它的单位是开尔文,中文代号是开,国际代号是k。

摄氏温标】是经验温标之一,亦称“百分温标”。温度符号为t,单位是摄氏度,国际代号是“℃”。摄氏温标是以在一大气压下,纯水的冰点定为0℃。在一大气压下,汽点作为100℃,两个标准点之间分为100等分,每等分代表1℃。在温度计上刻100℃的基准点时,并不是把温度计的水银泡(或其他液体)插在沸腾的水里,而是将温度计悬在蒸汽里。实验表明只有纯净的水在正常情况下沸腾时,沸水的温度才同上面蒸汽温度一样。若水中有了杂质,溶解了别的物质,沸点即将升高,也就是说,要在比纯净水的沸点更高的温度下才会沸腾。如水中含有杂质,当水沸腾时,悬挂在蒸汽里的温度计上凝结的却是纯净的水,因此它的水银柱的指示跟纯净水的沸点相同。在给温度计定沸点时,避免水不纯的影响,应用悬挂温度计的方法。

为了统一摄氏温标和热力学温标,1960年国际计量大会对摄氏温标予以新的定义,规定它应由热力学温标导出,即

t=t-273.15

用摄氏度表示的温度差,也可用“开”表示,但应注意,由上式所定义的摄氏温标的零点与纯水的冰点并不严格相等,沸点也不严格等于100℃。华氏温度计的冰点为32度,沸点为212度,两

 

华氏温标】是经验温标之一。在美国的日常生活中,多采用这种温标。规定在一大气压下水的冰点为32度,沸点为212度,两个标准点之间分为180等分,每等分代表1度。华氏温度用字母°f表示。它与

摄氏温度(c)和华氏温度(f)之间的换算关系为

 

摄氏温标与华氏温标的各种温度计,在玻璃管中根据不同的用途,装有不同的液体(如煤油、酒精或水银),由于液体膨胀与温度之间并不严格遵守线性关系,而且不同的液体和温度的非线性关系彼此也不一样,由于测温物质而影响温标的准确性,为此这些经验温标已在废弃之列。

国际实用温标】从准确与实用出发,在1927年第七届国际计量大会上决定采用国际温标。由于科学技术不断地发展,工业生产上的需要,国际温标不断修改,目前所采用的国际实用温标,是1968年国际计量委员会对1948年国际实用温标(1960年修正版)作了重要修改而建立的。1968年国际实用温标选取的方法,是根据它所测定的温度可紧密接近热力学温度,而其差值应在目前测定准确度的极限之内。1968年国际实用温标在国际实用开耳文温度和国际实用摄氏温度之间是用符号t68和t68来加以区分的。t68和t68之间的关系是:t68=t68-273.15。t68和t68的单位如在热力学温度t和摄氏温度t中一样仍为开尔文(符号k)和摄氏度(符号℃)。常用的换算公式是t=t+273.15。

三相点】亦称“三态点”。一般指各种稳定的纯物质处于固态、液态、气态三个相(态)平衡共存时的状态,叫做该物质的“三相点”。该点具有确定的温度和压强。

物态叫做“相”,通常物质是以三种形态存在。即固态、液态、气态,也可称为固相、液相、气相。物体的变化常叫做相变。或者说,在某一系统中,具有相同物理性质均匀的部分亦称为相。相与相间必有明显可分的界面。例如,食盐的水溶液是一相,若食盐水浓度大,有食盐晶体,即成为两相。水和食油混合,是两个液相并存,而不能成为一个相。又如水、冰和汽三相共存时,其温度为273.16k(0.01℃),压强为6.106×102帕。由于在三相点物质具有确定的温度,因此用它来作为确定温标的固定点比选汽点和冰点具有优越性,所以三相点这个固定温度适于作为温标的基点,现在都以水的三相点的温度作为确定温标的固定点。

几种物质三相点的数据

 

温  度  (k)

压  强  (帕)

13.84

7038.2

18.63

17062.4

24.57

43189.2

63.18

12530.2

二氧化碳

216.55

517204

273.16

610.5

 

零度】零度是根据理想气体所遵循的规律,用外推的方法得到的。当温度降低到-273.15℃时,气体的体积将减小到零。若用分子运动论来解释,理想气体分子的平均平动动能由温度t确定,则可将零度与“理想气体分子停止运动时的温度”等同看待。事实上一切实际气体在温度接近-273.15℃时,早已变成液态或固态,它的温度趋于一个极限值,这个极限值就称为零度。零度是温度的Zui低点,实际上永远也不会达到的。

分子物理学】物理学的一个学科。分子物理学从物质的微观结构的观点出发,研究气体、液体和固体的基本性质及其热现象的规律。如物体的体积,压强和温度之间的关系;物质的比热容;扩散、热传递、粘滞性等输运过程以及液体的表层性质,相平衡以及简单的相变过程。

分子运动论】分子运动论是从物质的微观结构出发来阐述热现象规律的理论,例如它阐明了气体的温度是分子平均平动动能大小的标志,大量气体分子对容器器壁的碰撞而产生对容器壁的压强。此外,它还初步揭示了气体的扩散,热传递和粘滞现象的本质,并解释了许多气体实验定律,分子运动论的成就促进了统计物理学的进一步发展。

分子】由化学键结合起来的单个原子或一组原子,它是物质中能独立存在并保持该物质一切化学性质的Zui小单位。例如,水分子是由两个氢原子和一个氧原子组成的(h2o)。像氯化钠那样的离子化合物并无明显的分子结构。氯化钠一般写成nacl,但氯化钠晶体事实上是由氯离子(cl-)和钠离子(na+)有规则排列。构成物质的单位是多种多样的,或是原子(如金属)或是离子(如盐类)或是分子(如有机物)。为了简化,在中学物理中,一般把构成物质的单位统称为分子。用油膜法可以粗略地测定分子的大小。分子直径的数量级是10-10米。物理学中有各种不同的方法来测定分子的大小。用不同方法测出的分子的大小并不完全相同,但数量级是相符的。把分子看作小球,是分子运动论中对分子的简化模型,实际上,分子有它复杂的内部结构。

阿伏伽德罗常数】是化学和物理学中的重要常数之一。1摩尔(简称摩,国际符号是mol)的任何物质,其中含有的粒子数相同。称为“阿伏伽德罗常数”。用“n”表示

n=6.022045×1023摩尔-1。

此常数系意大利化学家阿伏伽德罗发现,因而得名。知道阿伏伽德罗常数,可算出水分子的质量mh2o=3×10-26千克。阿伏伽德罗常数是微观世界的一个重要常数,用分子运动论定量地研究热现象时经常要用到它,它是联系宏观世界和微观世界的桥梁。这一常数将摩尔质量或摩尔体积这种宏观物理量跟分子质量或分子大小这种微观物理量联系了起来。因此阿伏伽德罗常数相当重要。上述为其值,通常可取作n=6.02×1023摩尔-1。

阿伏伽德罗定律】又称“阿伏伽德罗假说”。由压强公式和气体分子的平均平动动能与温度的关系,将得到气体压强的另一表达式:

p=nkt

这一公式表明,在相同的温度t和相同的压强p下,任何气体在相同的体积内所包含的分子数都相等。这一结论叫做“阿伏伽德罗定律”。如在标准状态(大气压值为标准大气压,温度t为273.15k)时,任何气体在1米3中含有的分子数都等于2.6876×1025个/米3。这个数值就称为洛喜密脱常数。由于1摩尔的任何气体所含分子数都相等,所以阿伏伽德罗定律也可表述为:在相同的温度和相同的压强下,1摩尔的任何气体所占有的体积都相同。这一定律仅对理想气体才严格正确。

物态】亦称“聚集态”。是物质分子集合的状态,是实物存在的形式,在通常条件下,物质有三种不同的聚集态:固态、液态和气态,即平常所说的物质三态。固态和液态,统称为凝聚态。它们在一定的条件下可以平衡共存,也可以相互转变。例如,在一个标准大气压,0℃时,冰、水混合物可以平衡共存,当温度和压强变化时,该混合物可以完全变成水,或完全结成冰。除上述物质三态外,近年来我们还把“等离子体”称为物质的第四态,把存在于地球内部的超高压、高温状态的物质称为物质的第五态。此外还有超导态和超流态。

固体】凡具有一定体积和形态的物体称为“固体”,它是物质存在的基本状态之一。组成固体的分子之间的距离很小,分子之间的作用力很大,绝大多数分子只能在平衡位置附近作无规则振动,所以固体能保持一定的体积和形状。在受到不太大的外力作用时,其体积和形状改变很小。当撤去外力的作用,能恢复原状的物体称弹性体,不能完全恢复的称塑性体。构成固体的粒子可以是原子、离子或分子,这些粒子都有固定的平衡位置。但由于这些粒子的排列方式不同,固体又可分为两类,即晶体和非晶体。如果粒子的排列具有规则的几何形状,在空间是三维重复排列,这样的物质叫晶体,如金属、食盐、金刚石等。如果组成固体的粒子杂乱堆积,分布混乱,这样的物质叫非晶体。如玻璃、石蜡、沥青等。晶体有一定的熔点,而非晶体却没有固定的熔解温度。非晶体的熔解和凝固过程是随温度的改变而逐渐完成的。它的固态和液态之间没有明显的界限。

液体】液体的分子结构介于固体与气体之间,它有一定的体积,却没有一定的形状。液体的形状决定于容器的形状。在外力作用下,液体被压缩性小,不易改变其体积,但流动性较大。由于受重力的作用,液面呈水平面,即和重力相垂直的表面。从微观结构来看,液体分子之间的距离要比气体分子之间的距离小得多,所以液体分子彼此之间是受分子力约束的,在一般情况下分子不容易逃逸。液体分子一般只在平衡位置附近作无规则振动,在振动过程中各分子的能量将发生变化。当某些分子的能量大到一定程度时,将作相对的移动改变它的平衡位置,所以液体具有流动性。液体在任何温度下都能蒸发,若加热到沸点时迅速变为气体。若将液体冷却,则在凝固点凝结为固体(晶体)或逐渐失去流动性。

气体】是物质三种聚集状态之一。气体分子间的距离很大,分子间的相互作用力很小,彼此之间不能约束,所以气体分子的运动速度较快,因此它的体积和形状都随着容器而改变。气体分子都在作无规则的热运动,在它们之间没有发生碰撞(或碰撞器壁)之前,气体分子作匀速直线运动,只有在彼此之间发生碰撞时,才改变运动的方向和运动速度的大小。由于和器壁碰撞而产生压强,因此温度越高、分子运动越剧烈,压强就越大。

联系方式

  • 地址:中国 河南 鹤壁市 鹤壁市淇滨区淇山路中段
  • 邮编:458030
  • 电话:86 0392 2636651
  • 联系人:张建立
  • 手机:13569637661
  • 传真:86 0392 2636661
产品分类